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Abstract 
    Windows Vista introduces several additional barriers that aim to 
prevent malicious code from gaining access to the operating system 
kernel. This paper is intended to provide a technical review of their 
implementation. The kernel mode security enhancements in Windows 
Vista are quite substantial, resulting in a dramatic reduction of its 
overall attack surface. However, the researcher has identified certain 
weaknesses in the kernel enhancements that may be leveraged by 
malicious code to undermine these improvements.  

INTRODUCTION  
Windows Vista introduces a number of security enhancements over 

prior versions of Microsoft Windows (including Windows XP SP2). 
The new kernel-mode security features in Windows Vista include 
among them:  

• Driver signing [1]  
• PatchGuard [2]  
• Kernel-mode code integrity checks [3]  
• Optional support for Secure Bootup using a TPM hardware chip [4]  

• Restricted user-mode access to \Device\PhysicalMemory [5]  

These changes may secure the kernel of Windows Vista 64-bit Edition 
significantly; even when compared to that of Linux or Mac OS X. The 
contributions of this paper are: (1) a thorough analysis of the kernel-
mode security components through reverse engineering and (2) an 
assessment of potential kernel-mode attacks.  
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A. What’s Covered  
This paper examines the new security features that have been 
incorporated to keep malicious code from compromising the kernel. 
Since most of these features are only available in the 64-bit edition of 
Windows Vista, this paper will focus on the 64-bit edition.  

 

B. What’s Not Covered  
This paper does not review the implementation of PatchGuard. An 
analysis of PatchGuard was performed previously by Skape and 
Skywing [6], however it should be noted that its implementation has 
since changed. Only some attacks against PatchGuard will be 
discussed. An assessment of Vista user-mode security was previously 
covered in [7]. 

 

  VISTA BOOT PROCESS  
A. Windows Vista Boot Manager (Stage 1)  

 
  Windows Vista supports booting from a legacy PC/AT BIOS and 
Intel’s new Extensible Firmware Initiative (EFI). The analysis was 
performed against the EFI version. For the remainder of this section, 
“it” refers to the instructions in bootmgr beginning at the entry point 
(DllMain for EFI, and instruction at offset 0 for PC/AT).  
  The process begins with Vista Boot Manager, located in the 
%SystemDrive%\bootmgr file (for PC/AT legacy BIOS) or 
%SystemDrive%\Boot\EFI\bootmgr.efi (for EFI BIOS). Though it can 
also be used to boot legacy versions of Windows, the Vista Boot 
Manager is required to boot Windows Vista.  
  The Vista Boot Manager calls InitializeLibrary, which in turn calls 
BlpArchInitialize (GDT, IDT, etc.), BlMmInitialize (memory 
management), BlpFwInitialize (firmware), BlpTpmInitialize (TPM), 
BlpIoInitialize (file systems), BlpPltInitialize (PCI configuration), 
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BlBdInitialize (debugging), BlDisplayInitialize, BlpResourceInitialize 
(finds its own .rsrc section), and BlNetInitialize.  
  The boot.ini configuration file has been replaced with Boot 
Configuration Data file in %SystemDrive%\Boot\BCD. This file is a 
registry hive (also mounted under 
HKEY_LOCAL_MACHINE\BCD00000000 on Windows Vista). Its 
contents can be viewed in a more human readable form using 
bcdedit.exe [10].  
A typical BCD entry for the Boot Manager looks like this:  

Windows Boot Manager  
Identifier: {bootmgr}  
Type: 10100002  
Device: partition=C:  
Description: Windows Boot Manager  
Locale: en-US  
Inherit options: {globalsettings}  
Boot debugger: No  
Pre-boot EMS Enabled: No  
Default: {current}  
Resume application: {3ced334e-a0a5-11da-8c2b-cbb6baaeea6d}  
Display order: {current}  

Timeout: 30  
If there is only one boot application entry in the BCD, the Boot 
Manager will boot from that entry. If there is more than one entry, the 
Boot Manager will present the user a list of bootable choices and ask 
the user to choose. If boot status logging is enabled, the Boot Manager 
will write its status into the file %SystemDrive%\Boot\bootstat.dat (via 
BmpInitializeBootStatusDataLog). Next the Boot Manager will locate 
bootmgr.xsl in the resource section (of its own executable file) using 
BlResourceFindHtml and then pass it to BlXmiInitialize. The 
bootmgr.xsl file controls what the boot menu looks like and the options 
exposed through the boot menu.  
   Once the boot application is selected, it is loaded with 
BmpLaunchBootEntry followed by BmpTransferExecution. 
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BmpTransferExecution will retrieve the boot options (via 
BlGetBootOptionString) and pass them to BlImgLoadBootApplication. 
If Full Volume Encryption (FVE) is enabled, 
BlFveSecureBootUnlockBootDevice and 
BlFveSecureBootCheckpointBootApp will be called. This is necessary 
because the Windows system partition is encrypted and must be 
decrypted before control can be transferred to the Vista OS Loader.  
Finally, the Boot Manager calls BlImgStartBootApplication to transfer 
control to the Windows Vista OS Loader.  
 
B. Windows Vista OS Loader (Stage 2)  
  The bootmgr calls the Windows Vista OS Loader, which is located 
under %SystemRoot%\System32\WINLOAD.EXE. WINLOAD.EXE 
replaces NTLDR (the legacy Windows NT OS loader). For the 
remainder of this section, “it” refers to the instructions in 
WINLOAD.EXE beginning at the entry point (OslMain).  
A typical BCD entry for the Windows Vista OS Loader looks like this:  

Windows Boot Loader  
Identifier: {current}  
Type: 10200003  
Device: partition=C: 

  
Path: \Windows\system32\WINLOAD.EXE  
Description: Microsoft Windows  
Locale: en-US  
Inherit options: {bootloadersettings}  
Boot debugger: No  
Pre-boot EMS Enabled: No  
Advanced options: No  
Options editor: No  
Windows device: partition=C:  
Windows root: \Windows  
Resume application: {3ced334e-a0a5-11da-8c2b-cbb6baaeea6d}  
No Execute policy: OptIn  
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Detect HAL: No  
No integrity checks: No  
Disable boot display: No  
Boot processor only: No  
Firmware PCI settings: No  
Log initialization: No  
OS boot information: No  
Kernel debugger: No  
HAL breakpoint: No  

EMS enabled in OS: No  
Execution begins at OslMain. It reuses a lot of the same code bootmgr 
uses, so the InitializeLibrary described previously for bootmgr works 
the same way in WINLOAD.EXE. After InitializeLibrary, control is 
transferred to OslpMain.  
If boot status logging is enabled, WINLOAD.EXE will write the results 
to %SystemDrive%\Boot\bootstat.dat (via 
OslpInitializeBootStatusDataLog and OslpSetBootStatusData). Next 
WINLOAD.EXE calls OslDisplayInitialize and locates osloader.xsl in 
the resource section using BlResourceFindHtml. Control is then passed 
to BlXmiInitialize. The osloader.xsl file controls the advanced (Vista-
specific) boot options during the OS bootup. After handling the 
advanced boot options (in OslDisplayAdvancedOptionsProcess), 
WINLOAD.EXE is now ready to prepare for booting.  
Booting begins by first opening the boot device (using BlDeviceOpen). 
BlDeviceOpen will use a different set of device functions depending on 
the device type.  

For Full Volume Encryption (_FvebDeviceFunctionTable) these 
are:  
dd 0 ; FVE has no EnumerateDeviceClass callback  
dd offset _FvebOpen@8 ; FvebOpen(x,x)  
dd offset _FvebClose@4 ; FvebClose(x)  
dd offset _FvebRead@16 ; FvebRead(x,x,x,x)  
dd offset _FvebWrite@16 ; FvebWrite(x,x,x,x)  
dd offset _FvebGetInformation@8 ; FvebGetInformation(x,x)  
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dd offset _FvebSetInformation@8 ; FvebSetInformation(x,x)  
dd offset _FvebReset@4 ; FvebReset(x)  

For block I/O (_BlockIoDeviceFunctionTable) these are:  
dd offset _BlockIoEnumerateDeviceClass@12 ; 
BlockIoEnumerateDeviceClass(x,x,x)  
dd offset _BlockIoOpen@8 ; BlockIoOpen(x, x)  
dd offset _BlockIoClose@4 ; BlockIoClose(x)  
dd offset _BlockIoReadUsingCache@16 ; 
BlockIoReadUsingCache(x,x,x,x)  
dd offset _BlockIoWrite@16 ; BlockIoWrite(x,x,x,x)  
dd offset _BlockIoGetInformation@8 ; 
BlockIoGetInformation(x,x)  
dd offset _BlockIoSetInformation@8 ; 
BlockIoSetInformation(x,x)  
dd offset ?handleInputChar@OsxmlMeter@@UAEHG@Z ; 
OsxmlMeter::handleInputChar(ushort)  
dd offset _BlockIoCreate@12 ; BlockIoCreate(x,x,x)  
For console (_ConsoleDeviceFunctionTable) these are:  
dd offset _UdpEnumerateDeviceClass@12 ; 
UdpEnumerateDeviceClass(x,x,x)  
dd offset _ConsoleOpen@8 ; ConsoleOpen(x,x)  
dd offset _ConsoleClose@4 ; ConsoleClose(x)  
dd offset _ConsoleRead@16 ; ConsoleRead(x,x,x,x)  
dd offset _ConsoleWrite@16 ; ConsoleWrite(x,x,x,x)  
dd offset _ConsoleGetInformation@8 ; 
ConsoleGetInformation(x,x)  
dd offset _ConsoleSetInformation@8 ; 
ConsoleSetInformation(x,x)  

dd offset _ConsoleReset@4 ; ConsoleReset(x)  
For serial port (_SerialPortFunctionTable) these are:  
dd offset _UdpEnumerateDeviceClass@12 ; 
UdpEnumerateDeviceClass(x,x,x) 

  
dd offset _SpOpen@8 ; SpOpen(x,x)  
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dd offset _SpClose@4 ; SpClose(x)  
dd offset _SpRead@16 ; SpRead(x,x,x,x)  
dd offset _SpWrite@16 ; SpWrite(x,x,x,x)  
dd offset _SpGetInformation@8 ; SpGetInformation(x,x)  
dd offset _SpSetInformation@8 ; SpSetInformation(x,x)  

dd offset _SpReset@4 ; SpReset(x)  
For PXE (_UdpFunctionTable):  
dd offset _UdpEnumerateDeviceClass@12 ; 
UdpEnumerateDeviceClass(x,x,x)  
dd offset _UdpOpen@8 ; UdpOpen(x,x)  
dd offset _SpClose@4 ; SpClose(x)  
dd offset _UdpRead@16 ; UdpRead(x,x,x,x)  
dd offset _UdpWrite@16 ; UdpWrite(x,x,x,x)  
dd offset _UdpGetInformation@8 ; UdpGetInformation(x,x)  
dd offset _UdpSetInformation@8 ; UdpSetInformation(x,x)  
dd offset _UdpReset@4 ; UdpReset(x)  

You’ll notice that some of the function callbacks are shared between 
different classes (e.g., serial port and PXE).  

Next the LOADER_PARAMETER_BLOCK structure is 
initialized in OslInitializeLoaderBlock. The 
LOADER_PARAMETER_BLOCK contains information on 
the system state, such as boot device, ACPI and SMBios tables, 
etc. This is what LOADER_PARAMETER_BLOCK looks like 
on the Windows Vista 64-bit Edition:  

+0x000 LoadOrderListHead : struct _LIST_ENTRY  
+0x010 MemoryDescriptorListHead : struct _LIST_ENTRY  
+0x020 BootDriverListHead : struct _LIST_ENTRY  
+0x030 KernelStack : Uint8B  
+0x038 Prcb : Uint8B  
+0x040 Process : Uint8B  
+0x048 Thread : Uint8B  
+0x050 RegistryLength : Uint4B  
+0x058 RegistryBase : Ptr64 to Void  
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+0x060 ConfigurationRoot : Ptr64 to struct 
_CONFIGURATION_COMPONENT_DATA  
+0x068 ArcBootDeviceName : Ptr64 to Char  
+0x070 ArcHalDeviceName : Ptr64 to Char  
+0x078 NtBootPathName : Ptr64 to Char  
+0x080 NtHalPathName : Ptr64 to Char  
+0x088 LoadOptions : Ptr64 to Char  
+0x090 NlsData : Ptr64 to struct _NLS_DATA_BLOCK  
+0x098 ArcDiskInformation : Ptr64 to struct 
_ARC_DISK_INFORMATION  
+0x0a0 OemFontFile : Ptr64 to Void  
+0x0a8 SetupLoaderBlock : Ptr64 to struct 
_SETUP_LOADER_BLOCK  
+0x0b0 Extension : Ptr64 to struct 
_LOADER_PARAMETER_EXTENSION  
+0x000 Size : Uint4B  
+0x004 Profile : struct _PROFILE_PARAMETER_BLOCK  
+0x014 MajorVersion : Uint4B  
+0x018 MinorVersion : Uint4B  
+0x020 EmInfFileImage : Ptr64 to Void  
+0x028 EmInfFileSize : Uint4B  
+0x030 TriageDumpBlock : Ptr64 to Void  
+0x038 LoaderPagesSpanned : Uint4B  
+0x040 HeadlessLoaderBlock : Ptr64 to struct 
_HEADLESS_LOADER_BLOCK  
+0x048 SMBiosEPSHeader : Ptr64 to struct 
_SMBIOS_TABLE_HEADER  
+0x050 DrvDBImage : Ptr64 to Void  
+0x058 DrvDBSize : Uint4B  
+0x060 NetworkLoaderBlock : Ptr64 to struct 
_NETWORK_LOADER_BLOCK bytes  
+0x068 FirmwareDescriptorListHead : struct _LIST_ENTRY  
+0x078 AcpiTable : Ptr64 to Void  
+0x080 AcpiTableSize : Uint4B  
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+0x084 BootViaWinload : Bitfield Pos 0, 1 Bit  
+0x084 BootViaEFI : Bitfield Pos 1, 1 Bit  
+0x084 Reserved : Bitfield Pos 2, 30 Bits  
+0x088 LoaderPerformanceData : Ptr64 to struct 
_LOADER_PERFORMANCE_DATA  
+0x090 BootApplicationPersistentData : struct _LIST_ENTRY  
+0x0a0 WmdTestResult : Ptr64 to Void  
+0x0a8 BootIdentifier : struct _GUID  
+0x0b8 u : union  
+0x000 I386 : struct _I386_LOADER_BLOCK  
+0x000 CommonDataArea : Ptr64 to Void  
+0x008 MachineType : Uint4B  

+0x00c VirtualBias : Uint4B 
  
  Next it discovers the system disks (OslEnumerateDisks) and loads the 
system hive HKEY_LOCAL_MACHINE (OslpLoadSystemHive). 
After the system hive is loaded, we encounter the first code integrity 
check point in the Windows Vista boot process 
(OslInitializeCodeIntegrity). First it calls MincrypL_SelfTest, which 
validates the SHA1 hashing and PKCS1 signature verification 
algorithms are working (using a pre-defined test case). If the pre-
defined test case fails, it returns error code 0xC0000428. Next, it 
checks if a debugger is enabled (BlBdDebuggerEnabled). If there is a 
debugger enabled, it calls KnownAnswerTest; otherwise, it skips the 
test.  
Next it loads the OS signed catalog from 
%SystemRoot%\System32\CatRoot\{F750E6C3-38EE-11D1-85E5-
00C04FC295EE}\nt5.cat in BlImgRegisterCodeIntegrityCatalogs 
(internally this calls the MinCrypL_AddCatalog API function).  

After the signed OS catalog nt5.cat is loaded, WINLOAD.EXE 
verifies its own integrity using SelfIntegrityCheck. This does two 
things:  
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1. Computes the SHA1 hash of the PE image, and then compares it 
to the SHA1 hash in the PE’s certificate table entry. These must 
match or it will return an error.  

 
2. In addition, it also calls ImgpValidateImageHash to verify the image 
hash matches the one in nt5.cat. ImgpValidateImageHash calls the API 
function MinCrypL_CheckSignedFile to verify the signature and API 
function MinCrypL_CheckImageHash to find the matching image hash 
in the signed catalog.  

If the signature doesn’t match but a debugger is enabled 
(BlBdDebuggerEnabled returns TRUE) then it will print the 
message:  
*** Windows is unable to verify the signature of the file %s.  
It will be allowed to load because the boot debugger is enabled.  
Use g to continue!!  

If a debugger is present, it will be activated via a call to 
DbgBreakPoint; otherwise, ReportCodeIntegrityFailure is called 
instead to report a fatal error.  
Once all the integrity checks have passed (unless all integrity checks 
have been disabled), OslInitializeCodeIntegrity will return 
successfully, and execution continues in OslMain again. Now, 
OslpLoadAllModules is called to begin the loading of the system 
modules. First, OslLoadImage is called to load NTOSKRNL.EXE and 
HAL.DLL, but no imports are resolved at this time. Second, if kernel 
debugging is enabled, one of the debugging drivers is loaded 
depending on the boot debugging options (kdcom.dll for serial port, 
kd1394.dll for IEEE1394, or kdusb.dll for USB). Third, the imports of 
NTOSKRNL.EXE are loaded and initialized (using the LoadImports 
and BindImportRefences functions).  

OslLoadImage calls GetImageValidationFlags to check the filename 
against a pre-defined list of boot drivers in LoadBootImagesTable. If 
integrity checks are enabled, then boot drivers must be signed by a 
trusted root authority and all the image hashes must match the signed 
catalog file unless a debugger is enabled. If a debugger is enabled, 
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WINLOAD.EXE does not enforce this requirement. Instead it will 
print an error message to the debugger, but will otherwise ignore the 
code integrity check failure. However, the following boot drivers (also 
listed in Appendix A) must pass the code integrity checks even if a 
debugger is enabled (otherwise WINLOAD.EXE will refuse to boot 
Windows Vista):  
\Windows\system32\bootvid.dll  
\Windows\system32\ci.dll  
\Windows\system32\clfs.sys  
\Windows\system32\hal.dll  
\Windows\system32\kdcom.dll (or kd1394.sys or kdusb.dll, depending 
on boot options)  
\Windows\system32\ntoskrnl.exe  
\Windows\system32\pshed.dll  
\Windows\system32\WINLOAD.EXE  
\Windows\system32\drivers\ksecdd.sys  
\Windows\system32\drivers\spldr.sys  
\Windows\system32\drivers\tpm.sys  
The process of loading the image and verifying its code integrity is 
done within BlImgLoadPEImageEx—it uses the same functions as 
SelfIntegrityCheck (described earlier in this section). Assuming all 
images passed the code integrity check, then NTOSKRNL.EXE and all 
of its imports are now loaded. This list (as of Build 5365) is:  
\Windows\system32\NTOSKRNL.exe  
\Windows\system32\HAL.dll 
\Windows\system32\PSHED.dll  
\Windows\system32\BOOTVID.dll  
\Windows\system32\CLFS.SYS  
\Windows\system32\CI.dll  
Next OslHiveFindDrivers is used to locate all the boot drivers and sort 
them based on the Group (which is ordered according to 
HKEY_LOCAL_MACHINE\CurrentControlSet\Control\GroupOrderL
ist) and Tag (an integer which determines each driver’s order within its 
respective group). This sorted list of boot drivers is then passed to 
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OslLoadDrivers for loading. OslLoadDrivers calls LoadImageEx for 
each driver in the list. LoadImageEx will load each driver and all of its 
dependencies.  
At this point, the remaining boot drivers are loaded and initialized. As 
of Build 5365 (64-bit Edition) this list in chronological order is: 
 

1. \Windows\system32\drivers\Wdf01000.sys  
2. \Windows\system32\drivers\WDFLDR.SYS  
3. \Windows\system32\drivers\acpi.sys  
4. \Windows\system32\drivers\WMILIB.SYS  
5. \Windows\system32\drivers\msisadrv.sys  
6. \Windows\system32\drivers\pci.sys  
7. \Windows\system32\drivers\volmgr.sys  
8. \Windows\system32\drivers\isapnp.sys  
9. \Windows\system32\drivers\mpio.sys  
10. \Windows\system32\drivers\compbatt.sys  
11. \Windows\system32\drivers\BATTC.SYS  
12. \Windows\System32\drivers\mountmgr.sys  
13. \Windows\system32\drivers\intelide.sys  
14. \Windows\system32\drivers\PCIIDEX.SYS  
15. \Windows\system32\drivers\pcmcia.sys  
16. \Windows\system32\drivers\aliide.sys  
17. \Windows\system32\drivers\amdide.sys  
18. \Windows\system32\drivers\cmdide.sys  
19. \Windows\system32\drivers\msdsm.sys  
20. \Windows\system32\drivers\pciide.sys  
21. \Windows\system32\drivers\viaide.sys  
22. \Windows\System32\drivers\volmgrx.sys  
23. \Windows\system32\drivers\atapi.sys  
24. \Windows\system32\drivers\ataport.SYS  
25. \Windows\system32\drivers\hpcisss.sys  
26. \Windows\system32\drivers\storport.sys  
27. \Windows\system32\drivers\adp94xx.sys  
28. \Windows\system32\drivers\adpu160m.sys  
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29. \Windows\system32\drivers\SCSIPORT.SYS  
30. \Windows\system32\drivers\adpu320.sys  
31. \Windows\system32\drivers\djsvs.sys  
32. \Windows\system32\drivers\arc.sys  
33. \Windows\system32\drivers\arcsas.sys  
34. \Windows\system32\drivers\elxstor.sys  
35. \Windows\system32\drivers\i2omp.sys  
36. \Windows\system32\drivers\iirsp.sys  
37. \Windows\system32\drivers\iteraid.sys  
38. \Windows\system32\drivers\lsi_fc.sys  
39. \Windows\system32\drivers\lsi_sas.sys  
40. \Windows\system32\drivers\lsi_scsi.sys  
41. \Windows\system32\drivers\megasas.sys  
42. \Windows\system32\drivers\mraid35x.sys  
43. \Windows\system32\drivers\msahci.sys  
44. \Windows\system32\drivers\nfrd960.sys  
45. \Windows\system32\drivers\ql2300.sys  
46. \Windows\system32\drivers\ql40xx.sys  
47. \Windows\system32\drivers\sisraid2.sys  
48. \Windows\system32\drivers\sisraid4.sys  
49. \Windows\system32\drivers\symc8xx.sys  
50. \Windows\system32\drivers\sym_hi.sys  
51. \Windows\system32\drivers\sym_u3.sys  
52. \Windows\system32\drivers\vsmraid.sys  
53. \Windows\system32\drivers\fltmgr.sys  
54. \Windows\system32\drivers\fileinfo.sys  
55. \Windows\system32\drivers\ndis.sys  
56. \Windows\system32\drivers\msrpc.sys  
57. \Windows\system32\drivers\NETIO.SYS  

58. \Windows\System32\Drivers\Ntfs.sys  
 

At this point all the boot drivers are loaded (see Appendix B for the 
full list of drivers loaded in chronological order). Next, 
OslpLoadNlsData is called to load native language locale information 
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from HKEY_LOCAL_MACHINE\CurrentControlSet\Control\NLS. 
Finally, the last step of OslpLoadAllModules is to call 
OslpLoadMiscModules which does the following:  

1. Displays the progress bar seen during bootup  
2. Loads %SystemRoot%\AppPatch\drvmain.sdb (the application 

compatability database)  
3. Loads %SystemRoot%\System32\acpitabl.dat  

 
4. Loads an INF file pointed to by 
HKEY_LOCAL_MACHINE\CurrentControlSet\Control\Errata\InfNa
me if present in the registry.  
After OslpLoadAllModules has finished, OslMain saves the boot log 
(OslpLogSaveInformation), finishes the Full Volume Encryption 
loading if enabled (BlFveSecureBootRestrictToOne and 
BlTpmShutdown), and finally calls OslArchTransferToKernel to 
transfer control to NTOSKRNL.EXE.  
 
C. Vista Windows OS Kernel (Stage 3)  

Windows Vista uses the same naming convention as previous 
versions of Windows. For 64-bit Windows Vista there is a single 
version of NTOSKRNL.EXE located under 
%SystemRoot%\System32\ntoskrnl.exe. For the remainder of this 
section, “it” refers to the instructions in ntoskrnl.exe beginning at the 
entry point (KiSystemStartup). 
Execution begins in KiSystemStartup. A significant portion of 
NTOSKRNL.EXE is unchanged from Windows 2003 SP1, so we focus 
on the changes that are specific to Windows Vista. NTOSKRNL.EXE 
adds a new function SepInitializeCodeIntegrity which is just a wrapper 
to the CiInitialize function in CI.DLL (CiInitialize is discussed later in 
Section VI). If code integrity checks are enabled, then 
SepInitializeCodeIntegrity calls CiInitialize; otherwise, it doesn’t do 
anything.  
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  WINLOAD.EXE was responsible for checking the integrity of the 
signatures of boot drivers. NTOSKRNL.EXE, in contrast, is 
responsible for the verification of system drivers (loaded after boot 
drivers) and drivers loaded at runtime (i.e., by the user or a device 
being inserted into the system). When integrity checks are enabled, the 
code integrity of the loaded image is checked SeValidateImageHeader 
(a wrapper to CiValidateImageHeader in CI.DLL) and 
SeValidateImageData (a wrapper to CiValidateImageData in CI.DLL). 
SeValidateImageHeader is called whenever an executable is mapped 
into kernel memory (via MmCreateSection). The code sections of 
kernel drivers are verified in SeValidateImageData which is called 
when a kernel module is being loaded. Runtime checks (e.g., 
continuously polling for modifications to the code sections of kernel 
drivers) are handled by PatchGuard and CI.DLL—discussed later in 
this paper.  

 

  DRIVER SIGNING  
   Observing past exploits, the most common mechanism used by 
malicious code to enter the Windows XP kernel is through a driver. A 
Windows XP user would browse the Internet using Internet Explorer, 
and then a malicious banner ad or website would exploit an Internet 
Explorer vulnerability to install malware on the victim’s machine. 
Since the de facto user account usually had administrative privileges, 
the malware could then install a kernel-mode rootkit with a few simple 
API calls, such as ZwLoadDriver.  
In the Windows Vista 64-bit edition, all drivers must be signed by a 

Class 3 code signing certificate. By requiring all drivers to be signed by 
a trusted certificate authority (i.e., VeriSign or Microsoft), kernel-mode 
drivers will no longer pose a threat unless a rogue vendor convinces a 
trusted certificate authority to issue them a publishing certificate. The 
onus, however, is upon these trusted certificate authorities to not give 
code signing certificates to companies that install malicious or 
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questionable applications. If they did, this enhancement will be 
undermined. An unscrupulous entrepreneur could register a legitimate 
business, obtain a publishing certificate from a trusted certificate 
authority, and then sign drivers on behalf of malicious vendors for a 
profit. It is incumbent upon Microsoft and all software vendors to keep 
their signing certificates secure, and only sign software that meets the 
users’ expectations for acceptable behavior.  
With respect to the integrity of boot drivers (those handled by 
WINLOAD.EXE), there is no mechanism to revoke a driver signing 
certificate (as of Build 5365). It seems that the problem with this 
approach is that if even a single software publishing certificate is stolen 
and published on the Internet (thus permitting anyone to sign their own 
drivers) then driver signing checks will become ineffective. Since even 
revoked certificates can be used to sign boot drivers, each certificate 
owner must ensure that employees do not have direct access to the 
publishing certificate and prevent an employee from taking a copy of 
the certificate in the event that he separates from the company. 
Microsoft has stated that they now plan to incorporate certificate 
revocation into Windows Vista RC1.  

 

Implementation  
   Windows Vista not only requires the driver be signed, but it also 
requires it be signed by one of eight (as of Build 5365) trusted root 
authority certificates. The driver signing checks for loading boot 
drivers is handled by WINLOAD.EXE, whereas signing checks for all 
other drivers is handled by NTOSKRNL.EXE (which incidentally uses 
CI.DLL to do the actual checks).  
Windows Vista relies on a small set of API functions in the MinCrypt 

library for driver signing verification:  
1. MinCrypL_CheckSignedFile (a.k.a. 

MinCrypK_CheckSignedFile) verifies that the driver is signed 
by a trusted certificate authority. It is used by both 
WINLOAD.EXE and CI.DLL.  
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2. MinCrypL_CheckImageHash verifies that the driver matches 
image hashes in the signed catalog. It is used by 
WINLOAD.EXE.  

 
3. MinCryptK_FindPageHashesInCatalog checks the code pages of a 
process or driver at runtime. Used by CI.DLL.  
1) MinCrypL_CheckSignedFile/MinCrypK_CheckSignedFile 

MinCrypL_CheckSignedFile eventually calls 
MinCryptVerifySignedDataLMode which parses and verifies the 
certificate. MinCryptVerifySignedDataLMode calls 
MinCryptVerifyCertificateWithRootInfo to extend the chain-of-trust to 
a root certificate authority. This function will use:  

ROOT_INFO 
*I_MinCryptFindRootByKey(CRYPTOAPI_BLOB *)  
ROOT_INFO *I_MinCryptFindRootByName(CRYPTOAPI_BLOB *)  

Both I_MinCryptFindRootByKey and I_MinCryptFindRootByName 
iterate across an array of trusted roots until a match is found.  

CheckNextRootTableEntry:  
cmp esi, [ebx-4]  
jnz short GetNextRootTableEntry  
mov esi, [edi]  
push esi  
push dword ptr [ebx]  
push dword ptr [edi+4]  
call _RtlCompareMemory@12 ; 

RtlCompareMemory(x,x,x)  
cmp eax, esi  

jz short FoundTrustedRoot  
GetNextRootTableEntry  
inc [ebp+var_4]  
mov eax, [ebp+var_4]  
add ebx, 14h  
cmp eax, ds:?ulRoots@@3KB ; ulong const ulRoots  

jb short CheckNextRootTableEntry  
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FoundTrustedRoot:  
mov eax, [ebp+var_4]  
imul eax, 14h  
add eax, offset RootTable ; ROOT_INFO const 

*RootTable  
return eax ; return RooTable[Index] (the matched trusted root)  
Microsoft Authenticode(tm) Root Authority  
Microsoft Root Authority  
Microsoft Root Certificate Authority  
Microsoft Code Verification Root  
Microsoft Test Root Authority  
VeriSign Commercial Software Publishers CA  
MS Protected Media Test Root  
Microsoft Digital Media Authority 2005  
Since the trusted root certificate authorities are fixed in the code, attack 
vectors that require expanding the set of the trusted root certificates, ala 
Internet Explorer attacks, do not work. Adding a new certificate 
authority under 
HKEY_LOCAL_MACHINE\Policies\Microsoft\SystemCertificates or 
HKEY_LOCAL_MACHINE\Software\Microsoft\EnterpriseCertificate
s has no effect on driver signing.  
If it is signed by a trusted root certificate authority, then the final step is 
to verify the actual signature—this is done by 
MinCryptVerifySignedHash. MinCryptVerifySignedHash performs the 
following sequence:  

1. MinAsn1ParsePublicKeyInfo  
2. MinAsn1ParseRSAPublicKey  
3. I_ConvertParsedRSAPubKeyToBSafePubKey  

 
4. I_VerifyPKCS1SigningFormat (which does the actual memory 
comparison)  
If the comparison matches, it returns success, otherwise it returns an 
error.  
2) MinCrypL_CheckImageHash  
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MinCryptL_CheckImageHash is quite simple. It walks a linked list of 
signed catalogs pointed to by g_CatalogList (which is a LIST_ENTRY 
structure) and calls I_CheckImageHashInCatalog to try to match the 
image hash in the signed catalog. If the image hash is found in one of 
the signed catalogs, it returns success, otherwise it returns an error.  
3) MinCrypK_FindPageHashesInCatalog 

MinCryptL_CheckImageHash is also quite simple. It does a binary 
search for a matching page hash in ntpe.cat, nt5.cat, or ntph.cat.  

 

PATCHGUARD  
   The researcher only provides a brief introduction to PatchGuard here, 
however that research is no longer current as of the more recent 
Windows Vista builds. PatchGuard was designed to prevent kernel 
patching on Windows Vista 64-bit edition. It protects the kernel by 
periodically checking and validating certain important data structures 
and core OS images. PatchGuard is hidden within NTOSKRNL.EXE 
(obscured, but not encrypted) and checks the critical system structures 
at random intervals, usually around 5-10 minutes. When a modification 
is detected, the system will blue screen with the following bugcheck 
(which will obviously cause the user to lose all unsaved data): . [6] 

CRITICAL_STRUCTURE_CORRUPTION (109)  
This bugcheck is generated when the kernel detects that critical 
kernel code or data have been corrupted. There are generally 
three causes for a corruption:  
1) A driver has inadvertently or deliberately modified critical 
kernel code or data. See 
http://www.microsoft.com/whdc/driver/kernel/64bitPatching.ms
px  
2) A developer attempted to set a normal kernel breakpoint using 
a kernel debugger that was not attached when the system was 
booted. Normal breakpoints, "bp", can only be set if the 
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debugger is attached at boot time. Hardware breakpoints, "ba", 
can be set at any time.  
3) A hardware corruption occurred, e.g. failing RAM holding 
kernel code or data.  
Type of corrupted region, can be  
0 : A generic data region  
1 : Modification of a function or .pdata  
2 : A processor IDT  
3 : A processor GDT  
4 : Type 1 process list corruption  
5 : Type 2 process list corruption  
6 : Debug routine modification  

          7 : Critical MSR modification  

Although integrity checks and driver signing requirements can be 
disabled, PatchGuard cannot. Even when integrity checks are disabled, 
PatchGuard is still active.  
 
PatchGuard Detection  
  There are many options for detecting the PatchGuard thread as 
described in [6]. Two other methods we propose to locate PatchGuard 
(which may likewise be addressed before the public release) are:  
1. Walk the KiTimerListHead  
This is an enhanced version of an idea proposed in [6]. The background 
is that PatchGuard must register a timer event that will trigger the next 
scan (PatchGuard scans for changes in random intervals). These entries 
are represented using the KTIMER structure. In [6], the authors 
proposed walking the list of registered timer events to find an entry 
with an invalid DeferredContext. The PatchGuard entry is easy to 
detect because all other entries will have a valid DeferredContext 
pointer in the KTIMER structure.  
The problem is that this list, pointed to by the KiTimerListHead 
variable is exported. The authors of [6] did not provide any good 
mechanism to discover this variable in memory and instead proposed 
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some rudimentary heuristics. We propose a more reliable method to 
find the KiTimerListHead variable. After locating the 
KiTimerListHead variable, we traverse the linked list and locate all 
time entries that do not have a valid DeferredContext pointer. We 
cannot find the location of PatchGuard code in memory from the 
DeferredContext pointer because it is encoded (using unknown random 
numbers). Instead, we can remove the entries to disable PatchGuard. 
This is a partial implementation in C utilizing this technique:  
LIST_ENTRY *GetKiTimerListHead()  
{  
KTIMER Timer;  
LARGE_INTEGER DueTime;  
KIRQL OldIrql;  
LIST_ENTRY *ListHead; 
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KeInitializeTimer(&Timer);  
// If KeSetTimer returns TRUE, this is guaranteed to be index 0 
because  
// we used the smallest possible time.  
// Likewise, we will be at the head of the list because there can't be 
anything smaller.  
// If KeSetTimer returns FALSE, then the timer already expired  
// So just use the smallest unit possible and we be at 
KiTimerListHead[0].Flink  
DueTime.QuadTime = -1;  
// Negative times are relative to current time--that's what we're 
interested in  
// If the timer object was already in the timer queue,  
// it is implicitly canceled before being set to the new expiration time.  
KeRaiseIrql(DISPATCH_LEVEL, &OldIrql);  
while (!KeSetTimer(&Timer, DueTime)) DueTime.QuadTime--;  
ListHead = Timer.TimerListEntry.Blink;  
KeCancelTimer(&Timer);  
KeLowerIrql(OldIrql);  
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return ListHead;  
}  
void DisablePatchGuard()  
{  
LIST_ENTRY *TimerTable = GetKiTimerListHead();  
ASSERTMSG("Couldn't find KiTimerTableListHead", TimerTable);  
if (TimerTable)  
{  
do  
{  
ListHead = &TimerTable[Index];  
NextEntry = ListHead->Flink;  
while (NextEntry != ListHead)  
{  
Timer = CONTAINING_RECORD(NextEntry, KTIMER, 
TimerListEntry);  
NextEntry = NextEntry->Flink;  
ASSERT(Timer->Dpc && Timer->Dpc->DeferredRoutine);  
// Current DeferredRoutine will be either KiScanReadyQueues,  
// ExpTimeRefreshDpcRoutine, or ExpTimeZoneDpcRoutine  
if (IS_IN_NTOSKRNL(Timer->Dpc->DeferredRoutine) &&  
!MmIsValidAddress(Timer->Dpc->DeferredContext))  
{  
RemoveEntryList(&Timer->TimerListEntry);  
return;  
}  
}  
Index += 1;  
} while(Index < MAX_INDEX);  
ASSERTMSG("Couldn't find PatchGuard timer", 0);  
}  

}  
2. Utilize a memory read breakpoint  
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First, add a memory read breakpoint (using the Intel debug registers) 
on IDT entry 1. Second, add an interrupt 3 (breakpoint exception) 
handler. PatchGuard will scan the IDT sequentially from the first entry 
to the last, so PatchGuard thread will trigger the memory read 
breakpoint. A custom interrupt handler will be installed to handle 
breakpoint exceptions.  
Third, wait for the memory read breakpoint exception to call the 
special interrupt handler we’ve installed. If the interrupt is not a 
memory read breakpoint on the first IDT entry, then this exception will 
be passed to the original interrupt 3 handler. Otherwise, the faulting 
instruction pointer is the PatchGuard thread and steps can be taken to 
disable PatchGuard (such as overwriting the PatchGuard code page 
with NOPs). This approach is likely to be effective at detecting 
PatchGuard since it detects a basic behavior of any integrity-checking 
memory scanning algorithm.  
V. DISABLING \DEVICE\PHYSICALMEMORY  

Disabling user-mode access to \Device\PhysicalMemory is also a 
significant step in reducing the possibility of malicious code entering 
the kernel. It was first disabled in Windows 2003 SP1 and is still 
disabled in Windows Vista. In the Phrack article [11], Crazylord 
demonstrated how to use \Device\PhysicalMemory to access to system 
memory and manipulate large parts of the kernel that are resident in 
non-paged memory. This can be done either by (1) scanning physical 
memory for a known signature of the area an attacker wishes to 
modify, or (2) calculating the physical address from a virtual address. 
One very convenient attack is to find the location of the Global 
Descriptor Table (GDT) and add a ring 0 call gate. Malicious code can 
then utilize the call gate using the CALL FAR instruction to jump into 
the kernel. Another technique is to find the Interrupt Descriptor Table 
(IDT) and install an interrupt gate. Malicious code can then use the 
INT instruction to utilize it and jump into the kernel. The author 
previously created proof-of-concept tool that utilized 
\Device\PhysicalMemory to detect BIOS rootkits.  
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VECTORS OF ATTACK  
A. Kernel-Mode Network Drivers  
Windows Vista handles several network protocols in the kernel 

through the use of kernel mode drivers. If vulnerability is discovered in 
one of these signed network drivers, the vulnerability could allow full 
machine compromise from a remote attacker. Such an attack is not 
precluded by Vista’s driver signing. Some examples of signed drivers 
handling network protocols in Windows Vista include:  

• NETIO.SYS handles the new Vista integrated IPv4/IPv6 network 
stack  

• HTTP.SYS handles HTTP requests  
• MRXSMB10.SYS handles SMB version 1 (used prior to Windows 

Vista)  
• MRXSMB20.SYS handles SMB version 2 (new for Windows 

Vista)  
• MRXDAV.sys handles WebDAV  

 
• MSRPC.sys handles MS RPC  

For the purposes of this paper, I did not perform an exhaustive analysis 
of the Windows Vista protocol drivers in order to identify security 
vulnerabilities. This exercise may be beneficial in the future in order to 
identify alternate mechanisms that may be used to execute within the 
Windows Vista kernel.  
 
B. Disabling Driver Signing and Code Integrity  
The most straight forward way to evade driver signing restrictions is 

to simply patch the on-disk executable files and disable the checks 
entirely. To load unsigned drivers at runtime, NTOSKRNL.EXE needs 
to be patched. However, patching NTOSKRNL.EXE will invalidate its 
digital signature, so that WINLOAD.EXE will refuse to load it. 
Therefore, WINLOAD.EXE will also need to be patched.  
One barrier that immediately becomes apparent when an attempt is 

made to patch these images is Windows Resource 
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Protection. Windows Resource Protection (WRP) sets ACLs on 

system files so that they are not writable by Administrator or 
LocalSystem—only the TrustedInstaller has write access. However, 
because Administrators and LocalSystem both have sufficient privilege 
to take ownership of securable objects, the steps to evade WRP are to 
first enable the SeTakeOwnership privilege, secondly take ownership 
of the WRP-protected file or registry key and finally grant 
Administrators full access. These steps can be done using the 
AdjustTokenPrivileges and SetNamedSecurityInfo APIs. After that, the 
on disk binaries can be patched without inhibition.  
Using this technique, we are now able to patch both 

NTOSKRNL.EXE and WINLOAD.EXE to successfully disable driver 
signing and code integrity within the Windows Vista kernel with a 
simple one byte modification.  
 
 
CONCLUSION  

Researcher has discussed in this paper the numerous security 
enhancements Windows Vista has added to kernel-mode security. The 
Windows Vista kernel enhancements are aimed at preventing unsigned 
code from being injected into the kernel and to establish a chain-of-
trust from the time that Vista boots until applications are run. In this 
paper, we have identified some limits to the effectiveness of Windows 
Vista’s new security capabilities:  

1. It is possible to disable the driver signing and code integrity 
capabilities by using binary patches on WINLOAD.EXE and 
CI.DLL. Patching these files at runtime is quite straightforward; 
each file requires patching at just a single location. Though these 
files are protected by Windows Resource Protection (WRP), this 
can easily be evaded as we have demonstrated in [7].  

2. The lack of certificate revocation support in WINLOAD.EXE can 
easily undermine the benefits of driver signing if the software 
publishing certificate of a company (signed by one of the trusted root 
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certificate authorities—currently Microsoft or VeriSign) is stolen, 
published, or misused by a current or former employee. It should be 
noted, Microsoft has stated that certificate revocation will be 
implemented in Windows Vista RC1.  

Finally, once the driver signing checks have been disabled, a malicious 
unsigned driver can now be loaded. This malicious driver could then 
hook NtQueryInformationFile and NtCreateFile (after disabling 
PatchGuard) to redirect attempts to load the NTOSKRNL.EXE or 
WINLOAD.EXE to the original, unmodified copy. This is to prevent 
any user-mode tools from detecting that the binaries have been 
patched. The only way to detect that the files have been patched would 
be to inspect them “on-disk” at a lower level—for example, by 
analyzing the NTFS structures.  
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