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  المستخلص
يتضمن البحث مناقشة أنواع مختلفة من خوارزميات تدريب الشبكات العصبيـة ذات التغذيـة    

  التقدميـة
وفي كل تلك الخوارزميات استخدمنا مشتقـة دالـة الطاقـة لتحديد كيفيـة ضبط الأوزان بحيث  

ـد لزي  ادة ت صبح دال  ـة الطاق  ـة أص  غر م  ا يمك  ن و لق د استخدمن  ـا خوارزمي  ـة الانت  شار المرت     
تختل  ف الخوارزمي  ات أع  لاه ف  ي ح  ساباتها و ل  ذلك نح  صل عل  ى ص  يغ      .سرع  ـة الت  دريب

متنوع  ـة ف  ي اتج  اه التفت  يش و الخ  زن ال  ذي تقت  ضيه فق  د أثبت  ت النت  ائج العملي  ة ب  أن أي  ا م  ن       
الخوارزميات أع لاه لا تمتل ك خ واص رئي سية مث ل الاس تقرارية و التق ـارب و الت ي تجعله ا                

  .   لمسائـل مناسبـة لكل ا
Abstract 

In this paper we describe several different training algorithms 

for feed forward neural networks. In all of these algorithms we use the 

gradient of the performance function, energy function, to determine 

how to adjust the weights such that the performance function is 

minimized, where the back propagation algorithm has been used to 

increase the speed of training. The above algorithms have a variety of 

different computation and thus different type of form of search 

direction and storage requirements, however non of the above 

algorithms has a global properties which suited to all problems.  

INTRODUCTION 

Back propagation(BP)process can train multilayer FFNN’s. 

With differentiable transfer functions, to perform a function 

approximation to continuous function f ∈ Rn, pattern association and 
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pattern classification. The term of back propagation to the process by 

which derivatives of network error with respect to network weights 

and biases, can be computed. This process can be used with a number 

of different optimization strategies. 

 There are two different ways in which BP algorithms can be 

implemented; incremental mode and batch mode. All of algorithms, in 

this paper, operate in the batch mode and are invoked using certain 

type of training. 

1.GRADIENT(STEEPEST) DESCENT(TRAINGD) 

A standard back propagation algorithm is a gradient descent 

algorithm (as in the Widrow-Hoff learning rule) .For the basic steepest 

(gradient) descent algorithm, the weights and biases are moved in the 

direction of the negative gradient of the performance function . For the 

method of gradient descent, the weight update is given by: w(k+1) 

= w(k) + αk(−gk) …………………..….(1) 

where αk regulates the learning rate and gk is the gradient of the error 

surface at w(k).   

If the learning rate is made too large the algorithm become 

unstable. If the learning rate is set too small, the algorithm will take a 

long time to converge. Then the convergence condition is satisfied by 

choosing: 0 < αk < 
.max2

1
λ

 

where λmax. is the largest eigenvalue of weight matrix [1]. 
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2. GRADIENT DESCENT WITH MOMENTUM(TRAINGDM) 

There is another training algorithm for FFNN that often 

provides faster convergence. The weight update formulas for gradient 

descent with momentum is given by:  

w(k+1) = w(k) + αk(−gk) + µ(w(k) − w(k−1)) 

that is:  w(k+1) = w(k) + αk(−gk) + µ∆w(k)  

………………………………….…………………(2) 

where the momentum parameter µ is constrained to be in the range (0, 

1). Momentum allows the ANN to make reasonably large weight 

adjustments, while using a smaller learning rate to prevent a large 

response to the error from any one of training pattern . 

3. FASTER TRAINING 

In this section, we will discuss several high performance 

algorithms fall into two main categories. The first category uses 

heuristic techniques, which were developed from an analysis of the 

performance of the standard gradient descent algorithm. Another 

heuristic modification is the momentum technique, variable learning 

rate and resilient back propagation.The second category of fast 

algorithms uses standard numerical optimization techniques such as: 

conjugate gradient, quasi-Newton and Levenberg-Marquardt. 

3.1.Variable Learning Rate 
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           With standard gradient descent, the learning rate is held 

constant through out training. The performance of the algorithm is 

very sensitive to the proper setting of the learning rate. If the learning 

rate is set too high, the algorithm become unstable. If the learning rate 

is too small, the algorithm will take too long to converge. Our 

numerical results shows that it is not practical to determine the 

optimal setting for the learning rate before training and, in fact, the 

optimal learning rate changes during the training process, as the 

algorithm moves across the performance surface.  

 We now describe in some detail one-dimensional search 

procedure that is guaranteed to find a learning rate satisfying the 

strong Wolfe conditions (3). As before, we assume that ρ is a search 

direction and that f is bounded below along the direction ρ. The 

algorithm has two stages. The first stage begins with a trial estimate 

α1, and keeps increasing it until it finds either an acceptable learning 

rate or an interval of desired learning rates. In the latter case, the 

second stage is invoked by calling a function called zoom (Zoom 

Algorithm), which successively decreases the size of the interval until 

an acceptable learning rates is identified. Now we introduce Strong 

Wolfe Conditions: 

f(wk + αkρk) ≤ f(wk) + 10−4αk∇ T
kf ρk........(3a) 

|∇f(wk + αkρk) ρk| ≤ 0.1|∇ T
kf ρk|............. (3b) 

Variable Learning Rate Algorithm 
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Set α0 ← 0, choose α1 > 0 and αmax.; 

i ← 1; 

repeat 

Evaluate φ(αi); 

If φ(αi) > φ(0) + 10−4αiφ′(0)  or  [φ(αi) ≥ φ(αi−1) and i > 1] 

α* ← zoom (αi−1, αi) and stop; 

Evaluate φ′(αi); 

If| φ′(αi)| ≤ −0.1φ′(0) 

Set α* ← αi and stop; 

If φ′(αi) ≥ 0 

Set α* ← zoom(αi-1, αi) an stop; 

Choose αi+1 ∈ (αi, αmax) 

i ← i + 1, 

end (repeat). 

Note that, the sequence of trial learning rates {αi} is 

monotonically increasing, but that the order of the arguments supplied 

to the zoom function may vary. The procedure uses the knowledge 

that the interval (αi−1, αi) contains learning rate satisfying the strong 

Wolfe conditions if one of the following three conditions is satisfied: 

(i) αi violates the sufficient decrease condition; 

(ii) φ(αi) ≥ φ(αi−1); 

(iii) φ′(αi) ≥ 0. 
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The last step of the algorithm performs extrapolation to find 

the next trial value αi+1. To implement this step, we can use 

approaches like the interpolation procedures above, or we can simply 

set αi+1 to some constant multiple of αi. 

We now specify the function zoom, which will requires a little 

explanation. The order of its input arguments is such that each call has 

the form zoom (αLo, αhi), where: 

(a) The interval bounded by αLo and αhi contains learning rates 

that satisfy the strong Wolfe conditions; 

(b) αLo is among all learning rates generated so far and satisfying 

the sufficient decrease condition, the one giving the smallest 

function value; and 

(c)    αhi is chosen so that φ′(αlo)(αhi − α 10) < 0. 

Each iteration of zoom generates an iterate αj between αLo and 

αhi, and then replaces one of these end points by αj in such a way that 

the properties (a), (b) and (c) continue to hold. 

Zoom Algorithm   
Repeat 

Interpolate (using quadratic, cubic, or bisection) to 

find a trial learning rate αj between αlo and αhi; 

Evaluate φ(αj); 

If φ(αj) > φ(0) + 10−4φ′(0) or φ(αj) ≥ φ(αlo) 

αhi ← αj; 
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else 

evaluate φ′(αj); 

if| φ′(αj)| ≤ −0.1φ′(0) 

set α* ← αj and stop; 

if φ′(αj)(αhi − αlo) ≥ 0 

αhi ← αlo; 

αlo ← αj; 
end (repeat). 

            If the new estimate αj happens to satisfy the strong Wolfe 

conditions, then Zoom has served its purpose of identifying such a 

point, so it terminates with α* = αj. Otherwise, if αj satisfies  the  

sufficient decrease condition and has a lower function value than αLo, 

then we set αLo ← αj to maintain condition (b). If this results in a 

violation of condition (c), we remedy the situation by setting αhi to the 

old value of αLo. 

3.2.Resilient Back Propagation (TRAINRP) 

The resilient back propagation training algorithm eliminates 

the harmful effect of having a small slope at the extreme ends of 

sigmoid transfer functions in hidden layers. Only the sign of the 

derivative of the transfer function is used to determine the direction of 

the weight update: the magnitude value of the derivative has no effect 

on the weight update. Our results shows the resilient back propagation 

is generally much faster than the standard gradient descent algorithm. 
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Also it has a nice property that it requires only a modest increase in 

memory requirements, and thus we do need to store the update values 

for each weight and bias. 

3.3.Quasi-Newton Algorithms 

Quasi-Newton (or secant) methods are based on Newton’s 

method but dont require calculation of second derivatives (at each 

step). They update an approximate Hessian matrix at each iteration of 

the algorithm. 

The optimum weight value can be computed in an iterative 

manner by writing: 

w(k+1) = w(k) − αkH−1g……………………….(4) 

where αk is the learning rate, gk is the gradient of the error surface 

with respect to the w(k) and H is the Hessian matrix (second 

derivatives of the error surface with respect to the w(k)). We can show 

that the Quasi-Newton’s method converges to the optimal weight w*. 

Now rewrite the equation of Newton’s method as: w *= w(k) − 

1
2

H−1gk  ……………………………………………………………….………………….….(5) 

Therefore, from eqs.(4) and (5), we get :w(k+1) = w(k) − 2αk(w(k) − 

w*) = w(k)(1 − 2αk) + 2αkw* 

Starting with an initial weight of w(0), we get:  
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                w(1) = w(0)(1 −2αk) + 2αkw* = w* + (1 − 2αk)(w(0) −w*) 

w(2) =w(1)(1 −2αk) + 2αkw* = w(0)(1 −2αk)2 + 2αkw*(1 −2αk) + 

2αkw* 

         = w* + (1 −2αk)2(w(0) −w*) 

w(k) = w* + (1 −2αk)m(w(0) − w*) 

Since w(0) − w* is fixed, w(k) converges to w*, provided: 0 < 2αk ≤ 

1, i.e., 0 < αk ≤ ½. 

We see that in the quasi-Newton method the steps do not 

proceed along the direction of the gradient . Now we introduce two 

quasi-Newton algorithms : 

3.3.1.BFGS Quasi-Newton Algorithm (TRAINBFG) 

This algorithm requires more computation for each iteration 

and our results shows more storage require than the CG methods, 

although, generally, converges in fewer iterations. For a very large 

ANN it may be better to use resilient back propagation or one of the 

CG algorithms. For smaller ANN, however, BFGS quasi-Newton 

algorithm can be used as an efficient training function. 

3.3.2.One Step Secant Algorithm (TRAINOSS) 

Since the BFGS algorithm requires more storage and 

computation in each iteration than the CG algorithms, there is need for 

a secant approximation with smaller storage and computation 
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requirements. The one step secant (OSS) method is an attempt to 

bridge the gap between the CG algorithms and the quasi-Newton 

(secant) algorithms . 

This algorithm does not store the complete Hessian matrix; it 

assumes that at each iteration the previous Hessian was the identity 

matrix. This has the additional advantage that the new search direction 

can be calculated without computing a matrix inverse . 

3.4.Levenberg-Marquardt Algorithm (TRAINLM) 

The Levenberg-Marquardt algorithm was designed to 

approach second order training speed without having to compute the 

Hessian matrix. When the performance function has the form of a sum 

of squares, then the Hessian matrix can be approximated as H = JTJ 

and the gradient can be computed as g =JTe, where J is the Jacobian 

matrix, which contains first derivatives of the network errors with 

respect to the weights and biases, and e is a vector of network errors. 

The Levenberg-Marquardt algorithm uses this approximation to the 

Hessian matrix in the following Newton update:  w(k+1) = w(k) − [JTJ 

+ µI]−1JTe  

               when the scalar µ = 0, this is just Newton’s method. When µ 

is large, this becomes gradient descent with a small step size. 

3.5.Conjugate Gradient Algorithms (TRAINCG) 
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The conjugate gradient algorithms perform a search along 

conjugate directions, which produces generally faster convergence 

than gradient descent directions [Hagan and Beale, 1996]. The CG 

algorithms start out by searching in the gradient descent direction 

(negative of the gradient) on the first iteration ،ρ0 = −g0. Then the next 

search direction is determined so that it is conjugate to previous search 

directions, that is: 

w(k+1) = w(k) + αkρk  . Where ρk = −gk + βkρk−1. 

The various versions of CG are distinguished by the manner in 

which the βk is computed. 

In this paper, we will present six different variations of CG 

algorithms with a comparison between them. In most of the training 

algorithms a learning rate is used to determine the length of the weight 

update (step size). 

In most of the CG algorithms, the step size is adjusted at each 

iteration. A search is made along the CG direction to determine the 

step size, which will minimize the performance function along that 

line search. The CG algorithms that usually used in ANN as a training 

algorithm is much faster than variable learning rate back propagation, 

and are sometimes faster than Resilient back propagation, although the 

results will vary from one problem to another. 

3.5.1.FLETCHER-REEVES UPDATE (TRAINCGF) 
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          The general procedure for determining the new search direction 

is to combine the new gradient descent direction with the previous 

search direction: ρk = −gk + βkρk−1 

For Fletcher-Reeves update procedure [2] : βk = 
1k

T
1k

k
T
k

gg
gg

−−

 

The training parameters for traincgf are: epochs, show, goal, time, 

min-grad, srchFcn. 

The training status will be displayed every show iterations of 

the algorithm. The other parameters determine when the training is 

stopped. The training will stop when the number of iterations exceeds 

an epochs, if the performance function drops below goal, if the 

magnitude of the gradient is less than mingrad or if the training time is 

longer than time in seconds. The parameter srchfcn is the name of the 

line search function. traincgf generally converges in fewer iterations 

than Resilient back propagation (TRAINRP) (although there is more 

computation required in each iteration). 

3.5.2.POLAK-RIBIERE UPDATE (TRAINCGP) 
            Another version of the conjugate gradient algorithm was 
proposed by Polak and Ribiere[3]. 

For the Polak-Ribiere update, the constant βk is computed 

from: βk = 
1k

T
1k

k
T

1k

gg
gg

−−

−∆  
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The traincgp routine has performance similar to traincgf. It is 

difficult to predict which algorithm will perform best on a given 

problem. The storage requirements for Polak-Ribiere (four vectors) 

are slightly larger than for Fletcher-Reeves (three vectors). 

3.5.3.DXON UPDATE (TRAINCGD) 

We propose another version of the conjugate gradient 

algorithm, which derive from classical method proposed by Dixon [4]. 

For the Dixon update, the constant βk is computed by: βk = 

1k
T

1k

k
T
k

g
gg

−−ρ

−
 

The training parameters for traincgd are: epochs ،show ،goal ،time ،

min-grad, max-fail, srchFcn, scal-tol, alpha, beta, delta, gama, low-

lim, up-lim, maxstep, minstep, bmax. 

The training status will be displayed every show iterations of 

the algorithm. The other parameters determine when the training is 

stopped. The training will stop if the number of iterations exceeds 

epochs, if the performance function drops below goal, if the 

magnitude of the gradient is less than mingrad, or if the training time 

is longer than time seconds, max-fail which is associated with the 

early stopping technique. 
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The parameter srchFcn is the name of the line search function. 

The remaining parameters are associated with specific line search 

routines. The default line search routine srchcha is used. 

The traincgd routine has performance, which is some what 

better than traincgp for some problems, although performance on any 

given problem is difficult to predict. 

The storage requirements for the Dixon algorithm (three 

vectors). 

3.5.4.AL-ASSADY AND AL-BAYATI UPDATE (TRAINCGA) 

We use another version of the conjugate gradient algorithm, 

when the classical method proposed by Al-Assady and Al-Bayati [5]. 

         For the Al-Assady and Al-Bayati update, the constant βk is 

computed by: βk = 
k

T
1k

1k
T
k

g
gg

−

−

ρ

∆−
 

The training parameters for traincga are: epochs, show, goal, time, 

min-grad, max-fail, srchFcn. The storage requirements for the Al-

Assady and Al-Bayati algorithm (four vectors) 

3.5.5.HESTENES-STIEFEL UPDATE (TRAINCGH) 

We will consider another version of the CG algorithm, when 

the classical method proposed by Hestenes-Stiefel [6]. 
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                      For the Hestenes-Stiefel update, the constant βk is 

computed by: βk = 
1k

T
1k

1k
T
k

g
gg

−−

−

∆ρ

∆  

The traincgh routine has performance similar to traincgd. 

The storage requirements for the Hestenes-Stiefel algorithm 

(four vectors) 

3.5.6.REYADH-LUMA UPDATE (TRAINCGR) 

We propose a new version of the CG algorithm when the 

search direction at each iteration is determined by: ρk = − gk + βkρk−1 

Where the constant βk is computed by: βk = 
1k

T
1k

1k
T
k

g
gg

−−

−

ρ

∆  

The training parameters for traincgr are: epochs, show, goal, 

time, min-grad, max-fail, sigma, lambda. 

We have previously discussed the first six parameters and the 

parameter sigma determines the change in the weight for the second 

derivative approximation .The parameter lambda regulates the 

indefiniteness of the derivative. 

The storage requirement for Reyadh-Luma (four vectors) 

Remark  

1. For all CG algorithms, the search direction will be periodically 

reset to the negative of the gradient. The standard reset point 
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occurs when the number of iterations is equal to the number of 

ANN parameters (weights and biases). 

2. For all CG algorithms, the parameters show and epoch set to 5 

and 300, respectively. 

3. Each of the CG algorithms, which we have discussed so far, 

requires a line search at each iteration. This line search is 

computationally expensive, since it requires that the ANN response 

to all training inputs which should be computed several times for 

each search. But the other hand one can designed an algorithm to 

avoid the time consuming for performing line search. 

4.Newton’s  method  has  a  quadratic convergence  property , that  is 

|en+1| ≤  ε |en|2  and  thus  often 

  converges faster than CG methods. Unfortunately, it is expensive 

because we need to compute the 

 Hessian matrix (second derivatives of the error surface with respect to 

the weight). 

3.5.7.LINE SEARCH ROUTINES (SRCHCHA) 

The method of srchcha was designed to be used in a 

combination with a CG algorithm for ANN training. We have used 

this routine as the default search for most of the CG algorithms, since 

it appears to produce excellent results for many different problems. It 

does require the computation of the derivatives (back propagation) in 
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addition to the computation of performance function, but it over 

comes this limitation by locating the minimum with fewer steps. 

4.SPEED AND MEMORY COMPARISON 

It is very difficult to know which training algorithm will be the 

fastest for a given problem. It will depend on many factors including 

the complexity of the problem, the number of data points in the 

training set, the number of weights and biases in the ANN, the error 

goal, and whether the ANN is being used for pattern recognition 

(discriminant analysis) or function approximation (regression). 

In general, on ANN’s which contain up to a few hundred 

weights the Levenberg-Marquardt algorithm will have the fastest 

convergence. The trainrp function is the fastest algorithm on pattern 

recognition problems. However, it does not perform well on function 

approximation on problems. The CG algorithms, in particular 

traincgp, seem to perform well over a wide variety of problems, 

particularly for ANN’s with a large number of weights. The traincgr 

algorithm is almost as fast as the Levenberg-Marquardt algorithm on 

function approximation problems (faster for large ANN’s) and is 

almost as fast as trainrp on pattern recognition problems. The CG 

algorithms have relatively modest memory requirements. 

The trainbfg performance is similar to that of trainlm. It does 

not require as much storage as trainlm, but the computation required 

does increase geometrically with the size of the ANN, since the 
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equivalent of a matrix inverse must be computed at each iteration. Of 

the CG algorithms, the traincgd requires the most storage, but usually 

has the fastest convergence. The traincgh and traincga have easily 

implemented for large problem. 

The variable learning rate algorithm traingdx is usually much 

slower than the other methods and has about the same storage 

requirements as trainrp but it can still be useful for some problems. 

For most situations, we recommend that we try to use the Levenberg - 

Marquardt algorithm first, if this algorithm requires too much 

memory, then try traincgp or traincgr or trainbfg algorithm. The 

following table gives some example convergence times for the various 

algorithms on one particular regression problem. In this problem a 1-

15-1 FFNN’s was trained on a data set with 41 input/output pairs until 

a mean square error performance of 0.008 was obtained. Twenty 

different test runs were made for each training algorithm to obtain the 

average numbers shown in the table. 

Function Technique Time(sec) Epochs 
Trainrp Rprop. 12.95 185 

Traincgh Hestenes-stiefel CG 27.22 112 
Traincgf Fletcher-Powell CG 18.03 94 
Traincgp Polak-Ribiere CG 18.66 79 
Traincgd Dixon CG 24.52 101 
Traincgr Reyadh-Luma CG 14.98 58 
Trainbfg BFGS quasi-Newton 9.76 38 
Trainlm Levenberg-Marquardt 2.07 8 
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Traingdx Variable learning rate 63.17 124 
Traincga Al-Assady and Al-Bayati CG 71.36 54 

Now we introduce the following problem. 1-5-1 network, with tansig 
transfer functions in the hidden layer and a linear transfer function in 
the output layer, is used to approximate a single  period of a sine  
wave. The following  table summarizes  the results  of training the 
ANN using nine different training algorithms. Each entry in the table 
represents 30 differ- ent trials,where different random initial weights 
are used in each trial.In each case,theANN  is trained until the squared 
error is less than 0.002. The fastest algorithm for this problem is the 
Levenberg-Marquardt algorithm.On the average,it is over four times 
faster than thenext fastest algorithm. This is the type of problem for 
which the LM algorithm is best suited -- a function approximation 
problem where the network has less than one hundred weights and the 
approximation must be very accurate. 

Algorithm Mean.Time(s)  Min.Time(s) Max.Time(s) 
LM 1.14 0.65 1.83 
BFG 5.22 3.17 14.38 
RP 5.67 2.66 17.24 

CGF 7.86 3.57 31.23 
CGP 8.24 4.07 32.32 
OSS 9.64 3.97 59.63 
CGR 5.92 2.31 16.47 
CGA 27.69 17.21 258.15 
CGD 6.09 3.18 23.64 
CGH 6.61 2.99 23.65 

               The performance of the various algorithms can be affected 
by the accuracy required of the approximation. This is  demonstrated 
in the  following  figure, which  plots the  mean  square  error versus 
execution time (averaged over 30 trials) for  several  representative  
 algorithms. Here we can see  that  the  error in the LM algorithm  
decreases  much  more  rapidly  with  time  than  the  other algorithms 
shown.   
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            The relationship  between the algorithms is further illustrated 
in the following figure, which plots the time required to converge 
versus the mean square error convergence goal. We can see that  
as the error goal is reduced the improvement provided by LM 
algorithm becomes more pronounced Some algorithms  perform better 
 as the  error goal  is reduced ( LM and BFG), and other algorithms 
degrade as the error goal is reduced (OSS and CGA). 

5.LIMITATIONS AND CAUTIONS 

The gradient descent algorithm is generally very slow, because 

it requires small learning rates for stable learning. The momentum 

variation is usually faster than simple gradient descent, since it allows 

higher learning rates while maintaining stability, but it is still too slow 
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for many practical applications. These two methods would normally 

be used only when incremental training is desired. Multi-layered 

networks are capable of performing just about any linear or non-linear 

computation, and can approximate any reasonable smooth function 

arbitrarily well. Such networks overcome the problems associated 

with the feed forward and linear networks. 

Picking the learning rate for a non-linear network is still an 

open problem. As with linear networks, a learning rate that is too large 

leads to unstable learning. Conversely, a learning rate that is too small 

results in incredibly long training times. Unlike linear networks, there 

is no easy way of picking a good learning rate for non-linear 

multilayer networks.  

The error surface of a non-linear network is more complex 

than the error surface of a linear network. The problem is that non-

linear transfer function in multilayer networks introduce many local 

minima in the error surface. Settling in a local minimum may affect 

the convergence and depending on how close the local minimum is to 

the global minimum and how low an error is required. In any case, be 

cautioned that although a multilayer back propagation network with 

enough neurons can implement just about any function, back 

propagation will not always find the correct weights for the optimum 

solution. 
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