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Abstract

The proposed method with new algorithm is presented to solve
the linear Volterra integral equation (VIE) of convolution type by
using the Z-transformation via converting the continuous-time integral
eguation to a discrete-time equation by using Euler’s rule. The paper
has useful properties of the Z-transformation. The results of the
proposed method is compared with the Laguerre polynomials and
good results are obtained. Four illustrative examples are given for
conciliated the accuracy of the results of this proposed method.
Key words : Volterra integral equation, Convolution

type, Z-Transform, Euler’s rule.

1. Introduction
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A large number of researchers and scientists published books
that we devoted entirely to integral equation methods and their
applications.

The advantage of the integral equation is witnessed by the
increasing frequency of integral equations in the literature and in
many fields, since more problems have their mathematical
representation appear directly, and in a very natural way, in terms of
integral equations. Other problems, whose direct representation is in
terms of differential equations have their auxiliary conditions replaced
by integral equations more elegantly than the differential equations
[1].

The name integral equation was introduced by Bois-Reymond
in 1888. However, the linear integral equation which is Volterra
equation, was introduced by Volterrain 1884.

An integral equation is an equation in which the unknown
function appears under the integral sign [1,2]. The general form of
linear integral equation is[3]:

h(x)y(x) = f(x) + k(xt) y(t)dt (D)

where h(x)and f(x)are known functions of x , k(x,t)is called the

kernel of the integral equation, a and b are the limits of integral either
are given constants or functions of x and the function y(x)which
appears under the integral sign is to be determined. Integral equations
can be classified into different kinds according to the limits of integral
and the kernel. If a and b in eg.(1) are constants then equation (1) is
called a Fredholm integral equation. If a in eg.(1) is a constant while
(b = x), eq.(1) is called a Volterra integral equation [3,4]. Volterra
integral equation was treated numerically using numerical methods as
Laguerre polynomials [5] and Taylor series method [2]. On the other
side the integral transformations are very useful for solving many
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kinds of Volterra integral equations. The most popular transformations
are Laplace transformation and Mellin transformation [1,6].

Analytic solutions of the integral equations is not easily
obtained by the classical methods [3,4,7], for examples :

Y(X) = X+ QYD) J,(x- Bk

where Ji(X) is the Bessel function of the first kind of
order one [4,6].

y(x) =-2xe * + z‘y(t)y(x- t)dt

y(X) =58n2x+ z‘)y(t)y(x- t)dt

So we need some approximated methods which can solve these
Volterra convolution equations.

In this work, an approximated solution of the linear Volterra
integral equation of the first and second kinds of convolution type is
presented using Z-transformation via discretization of continuous-time
integral equation using Euler’s rule. Some of definitions and
categories of linear integral equations are given in the following
section.

2. Classification of Linear Integral Equations :

Integral equations can be classified into different kinds
according to the limits of integral and the kernel. Some definitions and
a preliminary classification of linear integral equations are introduced
[1,3,6].

Definition (1):

If f(x)°othen eq.(l) is called homogeneous equation,
otherwise it is called non-homogeneous.
Definition (2):

The integral equation (1) is called an integral equation of the
first kind when h(x) ° 0, whichiis:
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b
f(x) = gk(x.t)y(t)dt ..(2)
where f(x) and k(x,t)are known functions.

Definition (3):
The integral equation (1) is called an integral equation of the
second kind when h(x)° 1, whichis:

b
y(x) = £ (%) + G(x.1) y(t)c e
where f(x) and k(x,t)are known functions.
Definition (4):

The integral equations (2) and (3) are called a Volterra integral
eguations when their upper limits are variable (i.e. b = x ). Hence the
integral equations :

f(x) = E‘)k(x,t)y(t)dt

..(4)

y(x) = f(x)+ k(x,t)y(t)dt ...(5)
represent Volterra integral equations of the first and the second kinds
respectively.

Definition (5):

If the kernel k(x,t)in eq.(1) depends only on the difference x- t
, such a kernel is called a difference kernel and the eg.(1) with this
kind of kernel is called an integral equation of convolution type:

h(x)y(x) = f(x) + cK(x- t)y(t)dt
...(6)
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The integral equation of convolution type is an important
integral in many applications. Convolution can be found in various
places in applied mathematics since it plays an important role in heat
conduction, wave motion and time series analysis [3,7].

The convolution of two functions is a way of combining them
together. The convolution of the functions k(x) and g(x) is:
b
OK(x - tyg(t)dt -

Hence, the integral equations :

f(x) = Z‘)k(x- t) y(t)dt

..(7)
y(x) = f(x) + oK(x- )y(t)at ...(8)
0
represent Volterra integral equations of convolution type of the first
and the second kinds respectively.

3. The Z-Transformation:

The Z-transform is used to transfer sequences of numbers into
algebraic equations which, in many cases, help the solution of
problems. It is a rule by which a sequence of numbers is converted
into a function of the transform variable (z).

The Z-transform of a sequence of numbers {f(k)} which is
identically zero for negative discrete time (i.e. f (k) =0for k =-1,-2,-
3,...) isdefined by:

Z{f(k)} =F(2)=4 f(k)z*

k=0
where z is an arbitrary complex variable [8,9].
In the values of the signal f(t) at the sampling instants (i.e. the
values of f(t) at t=KT (k=012..)) the Z-transform of f(t)is
[7,10]:
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Z{f() =Z{f(KT)} =F(z2)=§ f(kT)z " ...(9)

k=0
where f(t) =0 at t <0, T isthe sample period and k is adiscrete-
time, k=012,....
Some examples of the Z-transform of discrete signals are given
intable (1) [9,10]:

Table (1) Table of commonly used Z-transform
f(kT) ,k30 F(z)= & f(kT )z "
1 1 z
(z-1)
2 kT Tz
(z-1)°
3 KT)?2 T?z(z+1)
( ) (z-1)°
4 3 T3z(z% + 4z +1)
(KT) D0
5 o okT z
Z- e-aT
6 - akT ZTe @
kTe (Z- e
7 (kT)Ze'akT T2 (z+e ™)
(z- e-aT)3
8 : z sin( wT )
Sn(k\NT) (z? - 2zcog( WT ) +1)
9 cos(kwT) z(z- cos (wT )
(z? - 2zcos( WT ) +1)
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The Z-transform possesses many important properties. These
properties will be proved to be useful in the analysis of discrete
systems [8,9].

a) Linearity Property :

If f, (k) and f, (k) are two discrete signals have Z-transform

F1(z) and F,(z) respectively, then :
Z{afi (k) +bfyk)} =aFi(2) +bFyz2) , k=0,12,...
where a and b are constants.
Proof :
From the definition of the Z-transform:

Z{af (k) +bf,(K)} = 5 {af, (k) +bf,(K)}z "

k=0
¥ ¥
=ag f,(Kz*“+bg f,(k)z"
k=0 k=0

=aFy(2) + bFa(2)
b) Right-Shifting Property :
Let m be a positive integer and let f (k) be a sequence which is
zero for (k < 0) . Further, let F (z) be the Z-transform of f (k) , then
Z{fkm}=z"F@ ,k=012,...
Proof :
From the definition of the Z-transform::

¥
Z{f(k- m} =8 f(k- mz*"
k=0
=f(m)+f@-mz t+. . +fO)z™+f@Q)z ™Y+ .
=z ™[f@O +f@Qz*+f(@ z?*+.],
(f (k) =0 for k <0) =z "H2).
c) Left-Shifting Property :
Let m be a positive integer and let f (k) be a sequence which is
zero for (k < 0). Further, let F (z) be the Z-transform of f (k) , then

oy



Z{tk+m}=2F@)- A f0)Z" k=012,

i=0
Proof :
From the definition of the Z-transform :

Z{ f (k + m)} :5 f(k+mz¥=f(m+ f(m+Dz '+ f(m+2)z% +L
k=0

By adding and subtracting terms, we obtain :

Z{f(k+m)} =2 F(0)+ fZ +L+f(mz ™+ f(M+)z ™ +L

- £(0)- fMz*- L- f(m- 1)z ™
or
m-1
Z{f(k+m}=2"F()- @ f()Z"" .

i=0

Table (2) lists the notable properties enjoyed by the Z-transform

Table (2) Properties of the Z-transform
Property Discrete Sequence Z-Transform
1 | Linearity af (k) +bg(k) aF(2) +bG(2)
2 | Right-Shifting f(k- m) Z"F(2)
3 | Convolution & _ _ F1(2)Fx(z
& f.(k- DE.0) (@)F2(2)
i=0
4 | Periodic-Sequence | f (k) = f(k + N) F(2) = NzN Nélf(k)z'k
z° -1
5 | Left-Shifting f (k+m) 7F(2)- mé"l £y
i=0
Ok . Z F
6 | summetion a f 21 &
i=0
7 | Multiplication by akf (K) F(a'lz)
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ak

8 | Multiplication by k f(K) ] ZdF(z)
k dz

The Z-transform opens up new ways for solving the problems. It
is well known that Z-transform is used successfully in many
engineering problems. Some applications of Z-transform are [7,11] :

1. Solution of the linear difference equation.
2. Digital filter design.
3. Transfer function.

The Z-transform technique to be a feasible approach in the
solution requires methods for determining the inverse Z-transform.
Given F(z), there are two methods for obtaining the inverse Z-
transform f (k) or f (kT), which will be given here. The two methods
are the power series and the inversion integral. In obtaining the
inverse Z-transform, we assume as usual that f (k) is zero for (k<0).
Z Y[F(2)] is denoted as the inverse Z-transform [9,11].

(1) Power Series Method :
The power series method for finding the inverse Z-transform of
a function F(z) which is expressed as the ratio of two polynomiasin z
domain involves dividing the numerator of F(z) by the denominator
such that a power series of the form
Fiz) =fo+f1z T+ fz %+ ...

...(10)
Is obtained. From the definition of the Z-transform , it can be seen that
the values of f (k) are simply the coefficients in the power series.
(2) Inversion-Integral Method :

The most general technique for obtaining the inverse of the Z-
transform is the inversion integral. Thisintegral is:

1
f(k)=—¢ -1 _
(0= 0F @20

..(12)
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where 1 is any closed curve which encloses all the poles of F(z) z **
and the poles of F(z) z ** are the values of z in the denominator which
sets F(z) z“* to infinity [9,11].
The integral in EQ.(11) can be evaluated via the expression :

f (K) = § [residuesof F(2)z** at the polesof F(z) 2]
...(12)
If the function F(z) z “* has a simple pole at (z = a), the residue is
evaluated as:

(residue) - |Zi®r2((z_ a)F(Z)Zk'l)

...(13)
For apole of order mat z=a [12], theresidueis calculated using the
expression :

H — l dm ! m k-1 0
(residue),_, I|m —[(z- a)"F(2)z""]=
Em- 1) oz 5
...(14)
4. Solution of Linear Volterra Integral Equations of Convolution
Type Using Z-Transformation :
Consider the linear Volterra integral equation (VIE) of the

convolution type of the form :
y(x) = £ (x) + K (x- )y(t)dt ...(15)
0

In order to obtain an approximated solution to eq.(15) by using Z-
transformation, we first convert the continuous-time integral equation
to a discrete-time equation. Integration in continuous-time is
considered to be equivalent to summation in discrete-time, where the
discrete-time signal is assumed to be generated by sampling a
continuous-time signal. Hence, by Euler’srule [7,12] we see that :




X k
Qou)du U T3 g(nT) ..(16)
-¥ n=-¥
where x at the sampling instants X=X, =k T, T is the sample period
and kisadiscrete-time, k3 0.
Hence, VIE in eq.(15) can be solved using Z-transform as
follows :
By discretization the continuous-time of eg.(15) using Euler’s
rule, one can get the following :

K (x- )y(t)dt® TQ K(T(k- m))y(mT) ..(17)

m=0
The convolution integral is converted to a convolution summation in a
discrete-time. For X=X, =k T, eq.(17) can be written as:

X k
K (x- y()dt® TG K(KT- mT)y(mT) ..(18)
0 m=0
and the functions y(x) and f(x) in eq.(15) is converted to a discrete-
time as follows:
y(x)® y(kT) and f(xX)® f(KT)
where T is the sample period and k is a discrete-time, k =012,....
Hence, VIE of the convolution type in eq.(15) becomes::

k
y(KT) = f(KT)+TQ K(KT- mT)y(mT) ..(19)
m=0
The following algorithm summarizes the steps for finding the
solution of the linear VIE of the_convolution type by using Z-
transform.
VIEC-ZT Algorithm

Step 1.
Convert the continuous-time of eg.(15) to a discrete-time as
follows :
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(@ Put Xx=x%, =KT, k30

(b) Convert oK (x- Dy(dt® TA K (KT - mT)y(mT)

(c) Convert y(x) ® y(KT) and_ f(x)® f(KT).

Step 2
Substitute (a), (b) and (c) of (step 1) into eq.(15) to obtain :

k
y(KT) = f(KT)+TQ K (KT - mT)y(mT)
m=0
Step 3:

Use eq.(9) and the convolution property of the Z-transform in
table(2) for taking the Z-transform to both sides to eg.(19) to
get :

Y(2) =F(2)+TK(2)Y(2)

Step 4:
Take the inverse Z-transform to both sides to the equation in
step (3) to find y(KT).

Step 5:

For al k=0,1,2,...,n compute y(kT), where

Y(KT) = y(X) = (%), Y(X),-..,Y(X,) , nisthe number of knots
and T is the sample period.

5. lllustrative Examples :

Example (1) :

Consider the following linear VIE of convolution type of the

first kind :

:

:

O(x- t)y(t)dt = x° O£ x£1
0

which has the exact solution [7]: Y(X) = 6X .

In this example the Z-transform is used to solve the above VIE.
Hence, by applying the algorithm (VIEC-ZT ) we get :
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X k
ox- y)dt =x*® TQ (KT - mT)y(mT) = (KT)*
0 m=0
Taking the Z-transform to both sides using eq.(9) and the tables
(1) and (2) yields :

é T Y(z)g TPz +4z+))
S -
&z-1* 4 (z-D°

T(Z +4z+1)
(z- 97
Then, taking the inverse Z-transform to both sides using eg.(14) gives

\ Y(2) =

y(KT) =6KkT

Table (3) shows the comparison between the exact solution and
the approximated solution by using VIEC-ZT algorithm when T=0.1 ,
X=X, =kT and k=0,1,2,...,10 depending on the least square error
(L.S.E.). For the comparison of computing accuracy depending on
L.S.E., the solution obtained by using the Laguerre polynomials [5] is
also tabulated.

Table (3) The solution of example(1)

« Exact The Laguerre
solution | Z-Transform | polynomials [5]
0 0 0 0.0000
+.1| 0.6000 0.6000 0.6000
+.2 | 1.2000 1.2000 1.2000
+.3 | 1.8000 1.8000 1.8000
+.4 | 2.4000 2.4000 2.4000
+.5| 3.0000 3.0000 3.0000
+.6 | 3.6000 3.6000 3.6001
+.7 | 4.2000 4.2000 4.2001
+.8 | 4.8000 4.8000 4.8002
+.9 | 5.4000 5.4000 5.4002
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1 | 6.0000 6.0000 6.0001
L.S.E. 0.0000000 0.0000012

Example (2) :
Consider the following linear VIE of convolution type of the
second kind :

y(x):x2+z‘)3in(x- t) y(t)dt OEx£1

4

X
which has the exact solution :  Y(X) = X +E .

This problem is solved by using the Z-transform. Hence, by
applying (VIEC-ZT ) algorithm we get the following results:

y(x) = x? + z‘)sin( X - t)y(t)dt ® y(kT)=(kT)? +T§ sn( KT - mT )y(mT )
0 m=0
where X=X, =KT,
Taking the Z-transform to both sides using eq.(9) and the tables

(1) and (2) yields :
z(z+DT? zsinT

Y(2) = Y
(2 (z- 1)° " (z% - 2zcosT +1) (2)

2 2

\ Y(2) = Tz(z+)(z - 22cosT+1)

(z- 1)*(Z°- z(2cosT +TsinT) +1)

Then, taking the inverse Z-transform to both sides using eq.(13)
and eq.(14) gives :

2T?(k%a (cosT - 1) + 2k*(1- cosT) - a +2cosT) .
(2-a)’

1¢

y(KT) = T?C,+T°C,




k <
2. 20 Jaz-a4 0€a ++/32 U
?Jr 2 4:§+ 2 1”(a+ a’- 4y (a+\/a27-4)cosT+1g
C = 2 o g g’
\/7%+\/a 1:
& o
LK N
- Ja2-403® - Ja2-4 06é;- a2 U
E%l 2 4:? 5 +1”(a 4 (@- va®- 4)cosT +1
' 8 )
C, = 2 o 3
-mLVaz-“-ﬁ
& 2 5
and

a =2cosT +TsinT .
Table (4) shows the comparison between the exact and the
approximated solution by using VIEC-ZT algorithm depends on the

least square error (L.S.E.) when T=0.1, X=X, =KT and k =

0,1,2,...,10. Again, the results obtained by the Laguerre polynomials
[5] is also listed in table (4) for comparison with the exact solution by
depending on L.S.E.

Table (4) The solution of example (2)

, | Exa The Eivromis
solution Z-Transform P y[5]

0 0 0.0000 0.0000

1 R R R

« 2 g g g

) Y v o9 v o9
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Figure (1) shows the solution of the VIE of the convolution type
which was given in example (2) by using Z-transform (VIEC-ZT
algorithm) with the exact solution and the Laguerre polynomials.

14 T T T
*-*_ Exact solution
13| | 00 Z-Transform solution )
.-.- Laguerre polynomials
'] -
0.8r
B
=
b
=
06 -
0.4r
02r
DQ ;L ¥ 1 | 1 1 1 |

1
] 0.1 0.2 0.3 0.4 05 06 07 08 0.g 1
H-AKIE

Fig.(1) The comparison between the exact solution, Z-transform
and Laguerre polynomials for Volterra integral of convolution type.
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The approximated solution by using Z-transform (VIEC-ZT
algorithm) is good when taking T small. Different values of T and the
corresponding L.S.E. coming from our choices are listed in table (5)
where 0£ x£1.

Table(5) The L.S.E. of Ex.(2)
when T=0.05 and 0.01
The Z-Transform solution
(VIEC-ZT algorithm)
T k L.S.E.
0.05| 0,1,...,20 | 0.0000011
0.010,1,...,100 | 0.000000002

Example (3) :
Consider the following linear VIE of convolution type of the
second kind :

y(x) = x+y(t) J,(x- t)dt O£ x£0.1
0
which has the exact solution [4,7]:
y(X) =3 (x* + Do (O)dt + 3 x5 (X) - 3X*,(X)
0

where J,(x)is the Bessdl function of the first kind of order zero [4]
and J,(x) isthe Bessel function of the first kind of order one [6]. For
the Bessel function see Ref.’s [4,6,7].

In this example the Z-transform is used to solve this VIE.
Hence, by applying the algorithm (VIEC-ZT ) we get :

X K
y(x) = x+ Qy(t) I, (x- t)dt ® y(KT)=KT +TQ y(mT)JI, (KT - mT)
0

m=0
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Taking the Z-transform to both sides using eq.(9) and the tables
(1) and (2) yields :

Y =
(2) (

Tz
g @)
Tz

(z- D*(1- Ty(2)

\ Y(2) =

Then, taking the inverse Z-transform to both sides using eg.(14) gives

2
Y(KT) = KT(1- TI,(KT))-T 2le(kT)
@- T3, (KT))

Table (6) shows the comparison between the exact and the
approximated solution by using VIEC-ZT algorithm depends on least
square error (L.SE.) when T=0.01 , X=X =KT and k =
0,1,2,...,10.

Table (6) The solution of example(3)
using VIEC-ZT algorithm

X The Z-Transform Exact

0 0 0
«.01 +.0100 +.0100
.02 +.0200 +.0200
.03 +.0300 +.0300
.04 +.0400 +.0400
.05 +.0500 +.0500
.06 +.0600 +.0600
.07 +.0700 +.0700
+.08 +.0800 +.0800
.09 +.0900 +.0901
0.1 0.1000 0.1001

A




| L.SE. | 0.0000000068 | |
The approximated solution by using Z-transform (VIEC-ZT
algorithm) is good when taking T small. Different values of T and the
corresponding L.S.E. coming from our choices are listed in table (7).

Table(7) The L.S.E. of
Ex.(3) when T=0.001 and
0.0001
The Z-Transform
solution(VIEC-ZT
algorithm)

T L.S.E.
0.001 0.679e-15

0.0001 0.68e-20

Example (4) :
Consider the following VIE of convolution type of second kind

y(x) =-2xe”* + gy(t)y(x - t)dt OEXxEL
0

which has the exact solution [3]: Y(X) = m,/2e ™ .

In this example the Z-transform is used to solve the above VIE.
Hence, by applying the algorithm (VIEC-ZT ) we get :

y(KT) =-2(KT)e ¥ +Ték y(KT ) y(KT - mT)

m=0
Taking the Z-transform to both sides using eq.(9) and the tables
(1) and (2) yields :
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Y(2) =- Zm "‘T(Y(Z))
1 \/1 8z’
LY e P Ty

\Y(z):T T (z-€)

Then, taking the inverse Z-transform to both sides using eg.(13) gives

ZTe

T

y(kT)=m~/2e
Table (8) shows the comparison between the exact and the
approximated solution by using VIEC-ZT agorithm depending on the

least square error (L.SE.), when T=0.1 , X=X, =KT and k =

0,12,...,10.
Table (8) The solution of example(4)
X Exact The Exact The
1 Z-Transform 2 | Z-Transform
0 1.414 1.4142 -1.4142 -1.4142
2
1 1.279 1.2796 -1.2796 -1.2796
' 6
. 2 1.157 1.1579 -1.1579 -1.1579
' 9
. 3 1.047 1.0477 -1.0477 -1.0477
' 7
4 0.948 0.9480 -0.9480 -0.9480
' 0
. 5 0.857 0.8578 -0.8578 -0.8578
' 8
«6 | 0.776 0.7761 -0.7761 -0.7761

A"




o o.ioz 07023  |-0.7023| -0.7023

. 8 0.335 0.6354 -0.6354 -0.6354

. 9 O.E(S)?S 0.5750 -0.5750 -0.5750

1 0.220 0.5203 -0.5203 -0.5203

L.S.E. 0.0000 L.S.E. 0.0000
6. Conclusion :

Z-Transform method has been presented for solving linear
Volterra integral equation of convolution type. It has been shown that
the proposed method is comparable in accuracy with Laguerre
polynomials [5]. The results show a marked improvement in the least
square errors (L.S.E.). From solving some test examples the following
points are included :

1- Z-Transform solves the linear VIE of the convolution type by
converting the continuous-time integral equation to a discrete-
time equation by using Euler’srule.

2- The Z-transform method gives a better accuracy and consistent
than Laguerre polynomials for solving VIE of convolution type.

3- The good approximation depends on the size of T, if T is
decreased then the number of points (knots) increases and the
L.S.E. approaches to zero.
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