Strongly-Pseudo-Extending Modules and SPmodules
الملخص
AbstractThrough out this paper, R will be denoted an associative commutative ring with identity, and all R-modules are unitary (left) R-modules. An R-module M is called extending if every submodule of M is essential in a direct summand of M. Extending modules have been studied recently by several authors, among them M. Harada, B. Muller, P.F. Smith, and J. Clark [3].
In this work, we introduce and study in section one the concept of strongly-pseudo-extending module which is stronger property than extending module.
An R-module M is called strongly-pseudo-extending if, every submodule is essential in a pseudo stable direct summand of M. A non-zero submodule N of an R-module M is called pseudo stable if for each R-monomorphism [1]. And a non-zero submodule K of an R-module M is called essential in M, if for every non-zero submodule L of M [5].
Several characterizations of strongly-pseudo-extending modules are given. Moreover, we investigate direct decomposition for strongly-pseudo-extending modules. Also inherited property for strongly-pseudo-extending modules is studied. We show that a closed (and hence direct summand) submodules of strongly-pseudo-extending module are strongly-pseudo-extending.
In section two of this paper, as a proper generalization of fully-pseudo stable modules and as a link between extending modules, and strongly-pseudo extending modules, we introduce, and study the concept SP-module. An R-module is called Sp-module, if every direct summand of M is pseudo stable. Many examples, properties and characterizations of this concept are given; we assert that extending modules and strongly-pseudo-extending modules are linked by SP-module. Known modules related to SP-module are considered. A direct summand of SP-module is SP-module.
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
حقوق النشر والترخيص
تطبق مجلة الفتح للبحوث التربوية والنفسية ترخيص CC BY (ترخيص Creative Commons Attribution 4.0 International). يسمح هذا الترخيص للمؤلفين بالاحتفاظ بملكية حقوق الطبع والنشر لأوراقهم. لكن هذا الترخيص يسمح لأي مستخدم بتنزيل المقالة وطباعتها واستخراجها وإعادة استخدامها وأرشفتها وتوزيعها ، طالما تم منح الائتمان المناسب للمؤلفين ومصدر العمل. يضمن الترخيص أن المقالة ستكون متاحة على نطاق واسع بقدر الإمكان وأن المقالة يمكن تضمينها في أي أرشيف علمي.
لمزيد من المعلومات، يرجى متابعة الرابط: https://creativecommons.org/licenses/by/4.0/.