Quasi- essential submodules

Authors

  • Haibat K. Mohammadali Department of mathematics College of Education University of Tikrit Iraq

Abstract

Let R be a commutative loop with a neutral and M a unary on R. An actual partial measure N of measure M is called an intrinsic partial measure if (o) ≠ NOK for each non-zero partial measure K of measured M. The actual partial L of measure M is called a quasi-intrinsic partial measure if (O) ≠ LOP for each non-zero initial partial measure P of M is a generalization to the intrinsic partial measure.

References

References

Abdul-Razak H.M (1999)"Quasi-prime modules and Quasiprime submodules" M. Sc. Thesis. Uni. Of Baghdad.

Abdullah N.K. (2005)" Semi-essential submodules and semiuniform modules" M. Sc. Thesis. Uni. Of Tikrit.

Elbast Z.A. and Smith P.F. (1988)" Multiplication modules"

Comm. I Algebra, 16. P755-779.

Kasch F. (1982)"Modules and Rings" Academic Press, New

York.

Larsen M.D. And MacCarthy P.J. (1971)" Multiplication

Theory of Ideals " Academic Press, New York.

Lu C.P. (1984) "Prime submodule of modules" Comment

Math.,Uni. Stpaul.33 PP.61-69.

Naoum A.G. (1994) "On the Ring of Endomorphism of finitely

generated multiplication modules" Periodica Mathemtca

Hungarica,29. PP.277-284

Published

2023-05-24

How to Cite

[1]
هيبت محمد علي, “Quasi- essential submodules”, jfath, vol. 10, no. 2, May 2023.