Quasi- essential submodules
Abstract
Let R be a commutative loop with a neutral and M a unary on R. An actual partial measure N of measure M is called an intrinsic partial measure if (o) ≠ NOK for each non-zero partial measure K of measured M. The actual partial L of measure M is called a quasi-intrinsic partial measure if (O) ≠ LOP for each non-zero initial partial measure P of M is a generalization to the intrinsic partial measure.
References
References
Abdul-Razak H.M (1999)"Quasi-prime modules and Quasiprime submodules" M. Sc. Thesis. Uni. Of Baghdad.
Abdullah N.K. (2005)" Semi-essential submodules and semiuniform modules" M. Sc. Thesis. Uni. Of Tikrit.
Elbast Z.A. and Smith P.F. (1988)" Multiplication modules"
Comm. I Algebra, 16. P755-779.
Kasch F. (1982)"Modules and Rings" Academic Press, New
York.
Larsen M.D. And MacCarthy P.J. (1971)" Multiplication
Theory of Ideals " Academic Press, New York.
Lu C.P. (1984) "Prime submodule of modules" Comment
Math.,Uni. Stpaul.33 PP.61-69.
Naoum A.G. (1994) "On the Ring of Endomorphism of finitely
generated multiplication modules" Periodica Mathemtca
Hungarica,29. PP.277-284
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Haibat K. Mohammadali
This work is licensed under a Creative Commons Attribution 4.0 International License.